Loading...

Postulate is the best way to take and share notes for classes, research, and other learning.

More info

Electric field, Coulomb's law, Gauss' law (1/25)

Profile picture of Samson ZhangSamson Zhang
Jan 25, 2024Last updated Jan 29, 20243 min read

Griffiths Ch. 2.1, part of 2.2

Coulomb's law

For a single, static point charge

q q q
at position
\vec{r} r \vec{r}
, the force exerted on a charge
Q Q Q
at position
\vec{r'} r \vec{r'}
is:

\vec{F} = \frac{1}{4\pi \epsilon_0} \frac{qQ}{\zeta^2} \hat{\zeta}
F=14πϵ0qQζ2ζ^\vec{F} = \frac{1}{4\pi \epsilon_0} \frac{qQ}{\zeta^2} \hat{\zeta}

where

\vec{\zeta} = \vec{r} - \vec{r'}, \hat{\zeta} = \frac{\vec{\zeta}}{\zeta} ζ=rr,ζ^=ζζ \vec{\zeta} = \vec{r} - \vec{r'}, \hat{\zeta} = \frac{\vec{\zeta}}{\zeta}
. Griffiths uses script r for this which makes more sense but I can't :(

The permittivity of free space

\epsilon_0 = 8.85\text{e-12 C2/(N m2)} ϵ0=8.85e-12 C2/(N m2) \epsilon_0 = 8.85\text{e-12 C2/(N m2)}


For multiple charges,

\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \sum \frac{q}{\zeta^2} \hat{\zeta}
E(r)=14πϵ0qζ2ζ^\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \sum \frac{q}{\zeta^2} \hat{\zeta}

And for a continuous distribution,

\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \int \frac{1}{\zeta^2} \hat{\zeta} dq
E(r)=14πϵ01ζ2ζ^dq\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \int \frac{1}{\zeta^2} \hat{\zeta} dq

where for a line distribution

dq = \lambda dl' dq=λdl dq = \lambda dl'
, for a surface
dq = \sigma da' dq=σda dq = \sigma da'
and for a volume
dq = \rho d\tau' dq=ρdτ dq = \rho d\tau'
.

Here's a line distribution example from Griffiths:



Flux and Gauss' law

Instead of calculating line, volume or surface integrals to get E fields for charge distributions, there are tricks using divergence and curl that we can use.

The flux of an E field through a surface S is:

\phi_E = \int_S \vec{E} \cdot d\vec{a}
ϕE=SEda\phi_E = \int_S \vec{E} \cdot d\vec{a}

For a point charge at the origin,

\phi_E = \int_S \vec{E} \cdot d\vec{a} = \int \frac{1}{4 \pi \epsilon_0} (\frac{q}{r^2} \hat{r}) \cdot r^2 \sin \theta d \theta d \phi \hat{r} = \frac{q}{\epsilon_0}
ϕE=SEda=14πϵ0(qr2r^)r2sinθdθdϕr^=qϵ0\phi_E = \int_S \vec{E} \cdot d\vec{a} = \int \frac{1}{4 \pi \epsilon_0} (\frac{q}{r^2} \hat{r}) \cdot r^2 \sin \theta d \theta d \phi \hat{r} = \frac{q}{\epsilon_0}

For multiple charges,

\vec{E} = \sum \vec{E_i} \implies \phi_E = \frac{Q_{enc}}{\epsilon_0}
E=Ei    ϕE=Qencϵ0\vec{E} = \sum \vec{E_i} \implies \phi_E = \frac{Q_{enc}}{\epsilon_0}

This is Gauss' law. We can use the divergence theorem to get the differential form of Gauss' law:

\oint_S \vec{E} \cdot d\vec{a} = \int_V (\nabla \cdot \vec{E}) d\tau \\ \: \\ Q_{enc} = \int_V \rho d\tau \implies \oint_S \vec{E} \cdot d\vec{a} = \int_V \frac{\rho}{\epsilon_0} d\tau \\ \: \\ \implies \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}
SEda=V(E)dτQenc=Vρdτ    SEda=Vρϵ0dτ    E=ρϵ0\oint_S \vec{E} \cdot d\vec{a} = \int_V (\nabla \cdot \vec{E}) d\tau \\ \: \\ Q_{enc} = \int_V \rho d\tau \implies \oint_S \vec{E} \cdot d\vec{a} = \int_V \frac{\rho}{\epsilon_0} d\tau \\ \: \\ \implies \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}

Here's an application to find the E field in a coaxial cable:



There are a few more pages to this solution, see it here.

Curl of electric field and potential formation

The curl of an electric field is always 0.

\nabla \times \vec{E} = 0 ×E=0 \nabla \times \vec{E} = 0
. Stokes' theorem tells us that, thus, the line integral over any closed loop of an electric field is also 0.

atm idk why curl is 0

This also means that the line integral from one point to another of an electric field is the same no matter the path -- the integral is path independent. (otherwise you could take one path from point A to B and another path back and end up with closed loop != 0)

Thus we can define electric potential:

V(\vec{r}) = \int_{\vec{o}}^{\vec{r}} \vec{E} d\vec{l}
V(r)=orEdlV(\vec{r}) = \int_{\vec{o}}^{\vec{r}} \vec{E} d\vec{l}

where

\vec{o} o \vec{o}
is some standard reference point. Conventionally,
\vec{o} o \vec{o}
is infinitely far away from what's being measured. In differential form,

\vec{E} = - \nabla V
E=V\vec{E} = - \nabla V




Comments (loading...)

Sign in to comment

Phys 142 E&M

S24 Pom class with Prof. Zook