Loading...

Postulate is the best way to take and share notes for classes, research, and other learning.

More info

Griffiths Ch 2: Electrostatics

Profile picture of Samson ZhangSamson Zhang
Mar 3, 20243 min read

We get the first two of Maxwell's Equations in this chapter!

Electric field

We begin with Coulomb's law:

\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \int \frac{1}{s^2} \hat{s} dq
E(r)=14πϵ01s2s^dq\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \int \frac{1}{s^2} \hat{s} dq

where the separation vector

s = \vec{r} - \vec{r'} s=rr s = \vec{r} - \vec{r'}
. This can be turned into a volume, surface or line integral with
dq = \rho \: d\tau = \sigma \: d\vec{a} = \lambda \: d\vec{l} dq=ρdτ=σda=λdl dq = \rho \: d\tau = \sigma \: d\vec{a} = \lambda \: d\vec{l}
, where
\rho, \sigma, \lambda ρ,σ,λ \rho, \sigma, \lambda
are the corresponding charge densities.

This form isn't exactly in the chapter, but we also have the force law

\vec{F} = Q \vec{E} F=QE \vec{F} = Q \vec{E}
for electric force, and more generally
\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B}) F=Q(E+v×B) \vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})
to include magnetic force, which will come later.

From this we get Maxwell's equations for the divergence and curl of electric fields.

Gauss' law:

\oint \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\epsilon_0} \implies \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}
Eda=Qencϵ0    E=ρϵ0\oint \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\epsilon_0} \implies \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}

and the curl of an electric field is always 0:

\oint \vec{E} \: d \vec{l} = 0 \implies \vec{\nabla} \times \vec{E} = \vec{0}
Edl=0    ×E=0\oint \vec{E} \: d \vec{l} = 0 \implies \vec{\nabla} \times \vec{E} = \vec{0}

Electric potential

The scalar potential

V(\vec{r}) = -\int_O^{\vec{r}} \vec{E} \cdot d \vec{l} V(r)=OrEdl V(\vec{r}) = -\int_O^{\vec{r}} \vec{E} \cdot d \vec{l}
is path independent. Note that
\vec{E} = -\vec{\nabla} V \implies \vec{\nabla} ^2 V = -\frac{\rho}{\epsilon_0} E=V    2V=ρϵ0 \vec{E} = -\vec{\nabla} V \implies \vec{\nabla} ^2 V = -\frac{\rho}{\epsilon_0}
, and for a region of no charge
\vec{\nabla}^2 V = 0 2V=0 \vec{\nabla}^2 V = 0


Generally for a charge distribution,

V(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \frac{1}{s} dq
V(r)=14πϵ01sdqV(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \frac{1}{s} dq

with

s, dq s,dq s, dq
same as for Coulomb's law.

Work and energy

The energy of a charge distribution can be calculated by the work it takes to bring in each charge. Individually

W = \int_a^b \vec{F} \cdot d\vec{l} = Q[V(b) - V(a)] W=abFdl=Q[V(b)V(a)] W = \int_a^b \vec{F} \cdot d\vec{l} = Q[V(b) - V(a)]
; with a reference point at infinity,
W = QV(\vec{r}) W=QV(r) W = QV(\vec{r})


Generally

W = \frac{1}{2} \int \rho V d\tau W=12ρVdτ W = \frac{1}{2} \int \rho V d\tau
, or over all space,
W = \frac{\epsilon_0}{2} \int E^2 d\tau W=ϵ02E2dτ W = \frac{\epsilon_0}{2} \int E^2 d\tau
.

Conductor

In a conductor, electrons are free to roam. They have the following properties:



\vec{E} = 0 E=0 \vec{E} = 0
inside because charges move to induce a field in opposition to whatever field is applied



\rho = 0 ρ=0 \rho = 0
inside due to Gauss' law. Then all net charge must be on the surface of the conductor.

Also,

\vec{E} E \vec{E}
must be perpendicular to the surface of the conductor, so from Gauss' law

\vec{E} = \frac{\sigma}{\epsilon_0} \hat{n}
E=σϵ0n^\vec{E} = \frac{\sigma}{\epsilon_0} \hat{n}

on the surface. Also,

\sigma = -\epsilon_0 \frac{\partial V}{\partial n} σ=ϵ0Vn \sigma = -\epsilon_0 \frac{\partial V}{\partial n}


Capacitors

Capacitance is defined as

C = \frac{Q}{V} C=QV C = \frac{Q}{V}
. For parallel plates,
C = \frac{A \epsilon_0}{d} C=Aϵ0d C = \frac{A \epsilon_0}{d}
for plates of area A with separation from each other d.

The work it takes to charge a capacitor up to a potential V is

W = \frac{1}{2} CV^2 W=12CV2 W = \frac{1}{2} CV^2
.


Comments (loading...)

Sign in to comment

Phys 142 E&M

S24 Pom class with Prof. Zook